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Problem 1: Gardening

(Proposed by Tamio-Vesa Nakajima.)

Observation 1. Consider a region that is 2 × (2k + 1) cells. Suppose that the first row contains
only flowers of type t, and the second row contains t on the first and last cell. Call such a region a
(2k +1)-cup. Such a region cannot exist for k > 0.

Proof. This can be shown by induction. For 2k +1 = 3, this can be checked immediately. For
2k + 1 > 3, note that in the second row of the (2k + 1)-cup contains an odd sequence, say of
length 2k′ +1 < 2k +1, containing one type of flower. If no third row exists, then clearly the
situation is impossible. otherwise, the odd length sequence determines a (2k′ +1)-cup, which
cannot exist.

Corollary 1. Thus no N ×M garden can exist when N or M are odd.

Proof. Consider M odd. Create an (N + 2) × (M + 2) garden by adding a new type of flower
around the old garden. Then the first two rows form a (M +2)-cup, which cannot exist as M +2
is odd.

Corollary 2. Thus for a garden to be possible, we must have N and M even.

Thus, from here on assume N,M are even.

Observation 2. Any N ×M garden satisfies K ≤NM/4, and K ,NM/4− 1.

Proof. Any type of flower must occupy at least 4 cells, and if it occupies more, it must occupy at
least 12 cells. This can checked by exhaustion. Thus clearly we must use at most NM/4 flower
types. Furthermore, if we were to remove flowers, one flower must take up more than 4 cells; it
must thus take up at last 12 cells, and we can use at mostNM/4−2 flower. So K ,NM/4−1.

Observation 3. For any row in a garden, there exists a flower type appearing within that row that
appears only at that row and below, or at that row and above.

Proof. Say that a segment on this row is closed if it contains all the appearances within that row
of all the flower types within that segment. We prove by induction that any closed segment
contains a flower type that appears only at this row and above/below it. The base case is a
segment of length 2, which is obvious: such a segment corresponds to a 2× 2 square with only
one flower type. Now consider longer segments. Suppose a flower type appeared only in one
continuous subsegment of our closed segment. It then follows that the region bounded by that
flower type does not intersect the row – which implies that the flower type only appears at the
row and on one side of it, as required. Otherwise consider any flower type that appears as at
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least two continuous subsegments of our segment. Then th interior of the region bounded by
this flower type intersects our segment. Take any segment of the intersection of this interior
with our segment – this is also a smaller closed subsegment. Thus we have completed our
inductive argument, as this smaller closed subsegment must contain a flower type that appears
at this row and only above/below it.

Note also that the entire row is a closed segment. Thus is must contain at least one color
that appears only at the row and above/below it.

Observation 4. For any N ×M garden, we have K ≥max(N/2,M/2).

Proof. Without loss of generality let M ≤ N . Thus we want to prove that K = N/2. Suppose
K < N/2. Consider the top-most and the bottom-most row where each flower type appears.
There are 2K < 2N such rows, so for at least one row all flowers that appear have appeared both
above and below it. But this is impossible by the previous observation. So K ≥N/2.

Observation 5. For an N ×N garden, K ,N/2+1.

Proof. Suppose k = N/2 + 1. Consider like in the previous observation the rows where each
flower type first and last appears. Clearly for at least one row there are two flower types that
either first or last appear at that row. Furthermore, because each row contains at least one
flower that appears first/last at that row, we can deduce that exactly two rows have exactly two
flowers that appear first/last at that row.

We now investigate the structure of the garden more fully. Suppose that for exactly the first
R rows we have had exactly one flower type appear. Then no flowers can appear last at row R+1
unless R =N/2 (since the ”flower type in the middle” is the only that can stop appearing, and it
can only stop appearing when it has width 2, i.e. at R =N/2). Thus at row R+1 we must have
exactly two flower types appearing. If both of these had width greater than 2, then at the next
row we would be forced to have again two flower types appearing, but this would mean that
there are too many flowers, so this cannot happen. So one of the flower types has width two,
and disappears on the next row. All other rows have exactly one appearance or disappearance;
and in fact all the rows from R+2 up to N/2 have one appearing flower, and all those left after
N/2 have exactly one disappearing flower. We can thus deduce that (N − 2R)× (N − 2R) that
is between rows and column R + 1 and N − R has a 2 × 2 corner of one type, and otherwise
is comprised of concentric flower types. Furthermore, it must have N/2 + R colors. This is
impossible.

Observation 6. For any even N,M , a garden exists for any K where max(N/2,M/2) ≤ K ≤NM/4,
K ,NM/4− 1, and either N ,M or K ,N/2− 1.

Proof. We provide a recursive procedure that achieves this:

1. If K =NM/4 then fill the entire garden with 2× 2 areas with one flower type each.

2. Suppose NM/4−N −M +1 ≤ K < NM/4− 1. Then there exists a rectangle boundary of
appropriate size, with one corner in one of the corners of the garden, that if planted with
one flower type, and the rest of the garden filled with 2× 2 areas with one flower type
each, gives us a garden with K flower types.

3. Suppose K = NM/4 −N −M . Suppose without loss of generality that N ≤M . If N ≤ 4
then K ≤ max(N/2,M/2) which is impossible – so N,M ≥ 6. First create a N × (M − 2)
rectangle filled border with one flower type, with its corner in the corner of the garden;
then within that rectangle create a 4× 4 rectangle border, filled with one flower type. Fill
the rest of the flower with 2× 2 regions each with one flower type.

4. Suppose K < NM/4 −N −M . Then it can be proved that we can fill the border of the
garden with one flower type, and recursively find the answer for N − 2,M − 2,K − 1.
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With a careful implementation this can be done in O(NM).

Problem 2: Present

(Proposed by Tamio-Vesa Nakajima.)
Say that a set is gcd-closed if it contains the greatest common divisor of all pairs of its

elements. Let G be the set of (finite) gcd-closed sets. The problem asks for the K-th gcd-closed
set in Laikan order. More usually, Laikan order is called colexicographic order; if A is before
B in Laikan/colexicographic order, write A � B. Furthermore, we define an “opposite” of the
gcd-closed sets. Call these gcd-independent sets: a set S is gcd-independent if and only if for
all x,y ∈ S we have gcd(x,y) < S . Let I be the set of (finite) gcd-independent sets.

Note that for any collection of sets {Si}i∈I ⊆ G we can deduce that S =
⋂

i∈I Si ∈ G. This is
because if x,y ∈ S then x,y ∈ Si for all i ∈ I , so gcd(x,y) ∈ Si for all i ∈ I , so gcd(x,y) ∈ S . Thus
we can state the following definition.

Definition 1. For any set S ⊆N, let 〈S〉 ∈ G be the smallest superset of S that is gcd-closed, i.e.

〈S〉 =
⋂

S⊆T∈G
T .

We call this the gcd-closed set generated by S .

Observation 7. For any S ∈ G there exists a unique T ∈ I such that S = 〈T 〉.

Proof. To find T , start with T = ∅. While S , ∅, remove x = maxS from S , add x to T , then
remove gcd(x,y) for all y ∈ T from S . T remains gcd-independent throughout, and 〈T 〉 = S .
Furthermore, each step is in a sense “forced” (the maximal element must always belong to T
for instance), so T is unique.

Observation 8. For any S,T ∈ I , we have S � T iff. 〈S〉 � 〈T 〉.

Proof. Left as an exercise; one direction can be shown using the procedure from the previous
observation.

These facts essentially show that 〈·〉 is an order-preserving bijection between I and G. Thus
finding the K-th gcd-closed set is in fact equivalent to finding the K-th gcd-independent set,
and generating a gcd-closed set from that. An interesting subproblem is finding the next
gcd-independent set in colexicographic order.

Observation 9. Given some S ∈ I , the following procedure can compute the smallest T ∈ I that is
greater than S (in colexicographic order):

1. Let x be the smallest integer not in 〈S〉.

2. Add x to S , and remove all elements less than x.

3. The resulting set is T .

In order to make repeatedly computing the next gcd-independent set in colexicographic
order efficient, one must also maintain the gcd-closed sets generated by these gcd-independent
sets. To do this, maintain the elements of the current gcd-independent sets on a stack together
with the elements in the generated set added because of the current elements. Removing small
elements from S is then equivalent to popping the stack. To push x to the stack, we must find
all the elements that are not currently in the generated set that must be added as a consequence
of adding x. This can be done by iterating over the divisors d of x (that are not currently in the
generated set) and checking if some element y is in the set for which gcd(x,y) = d. All of this
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can be made efficient by precomputing {y | gcd(x,y) = d} for all pairs (x,d) that can appear in
the problem (it can be proved that x,d ≤ 40). Furthermore, as an implementation note, it is
much more efficient to represent sets as bitmasks.

We have now found a procedure that can, for a gcd-independent set, efficiently find the
next gcd-independent set in colexicographic order. To solve our problem, precompute the 0-th,
107-th, (2 · 107)-th, etc., gcd-independent sets, storing them in the source code for the problem.
Then, on run-time, starting from one of the precomputed gcd-indpendent sets, iterate to the
desired one. Recall of course that finding the K-th gcd-independent set is equivalent to finding
the K-th gcd-closed set.

Problem 3: Speedrun

(Proposed by Matei Tinca.)

Subtask 1. For each node, we can just hold it’s line in the adjacency matrix. That is, for node
x, we store a string of length N , where the i-th bit is 1 if there is an edge between x and i. To
walk through every node, we can just run a dfs algorithm, because for each node we have the
list of its neighbours.

Subtask 2. Since the graph is a star, we have a central node which is connected to every other
node. We can label every node with the index of the central node written in binary form. For
instance, if the central node is 13, we can store 0000001101 in every node (although, if we
hold the bits in reverse order, the implementation would be easier). Therefore, we know the
structure of the entire tree from every node, so we can run a dfs algorithm to go through every
node. Also, since we have 20 bits, we only use the first 10, which are enough, since they can
store every number from 0 to 210 − 1 = 1023.

Subtask 3. Since the graph is a path, for each node we can store its neighbours, or 0 if the
node is an endpoint. To go through every node, we go to the left as much as we can, and after
hitting the endpoint, we can go to the right until we hit the other endpoint.

Subtask 4. In this subtask we must exploit the fact that we have a lot of possible calls and big
labels. For this, we must observe that there are at most

√
N nodes which have a degree higher

than
√
N . So, for this subtask, for the nodes with less than

√
N neighbours, we can just hold

its adjacency list. This will use at most
√
N logN bits. For the other nodes, we don’t need to

store anything, and we can just try every other node. In the end, each node will use at most√
N logN , and we do at most N

√
N wrong calls.

Subtask 5. In this solution, we use labels of size 3logN and we make no wrong calls. After
rooting the tree in one node, for instance node 1, for each node, we can hold its father, one
of its sons, and a link to one of it’s “sibling”. Therefore, for a node we can discover all of its
neighbours: the father, one of the sons, and by going from “sibling” to “sibling” from that son,
we can discover every son of that node. Keep in mind, that the sons of a node have to be linked
in a cycle so that we can discover every node.

Subtask 5. In this solution, we use labels of size 2N and we make at most 2N wrong calls. We
can run a depth-first search (dfs) from the root, and whenever we visit an unvisited node, we
push it to a stack. After the dfs ends, the stack will contain the dfs-walk of the graph. For each
node, we are going to hold its father and the next node to it in the dfs-walk (we are considering
the dfs-walk to be cyclic, after the last element we have the first element of the stack). To walk
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through the entire graph, when we are in a node, we try to go through the next node in the
dfs-walk. If the function fails, we go to its father, and try again. If it doesn’t work again, we go
to its father and try again and do this until it works.
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Problem 1: NuM

(Proposed by Alexandru Petrescu.)
We will compute the number of gardens that do not satisfy the required conditions, then

subtract that from (2n)!.
Let Ai denote the set of gardens (written as permutations of (i, j) where i ∈ {1,2}, j ∈ {1, . . . ,n})

where the stones with index i are at a distance divisible by M . We are therefore interested in
the size of

⋃

i Ai . By the inclusion-exclusion principle this value is equal to

∑

S⊆2{1,...,n},S,∅
(−1)|S |

∣

∣

∣

∣

∣

∣

∣

⋂

i∈S
Ai

∣

∣

∣

∣

∣

∣

∣

.

By symmetry, we know that
⋂

i∈S Ai =
⋂|S |

i=1Ai . Thus, letting f (i) = ∩ij=1Aj be the number of

sequences where pairs with indices 1, . . . , i are at distance divisible by M , this number is

n
∑

i=1

(

n

i

)

(−1)if (i).

Let d[i][j] be the number of ways of arranging the stones with numbers 1, . . . , j at positions
with remainder 1, . . . , i modulo M , so that for each x ∈ {1, . . . , j} the stones with number x are at
distance divisible by M . Observe that f (i) = d[M][i](2n − 2i)! (we first place the stones with
numbers 1, . . . , i in d[M][i], then place the remaining ones in (2n− 2i)! ways). So the number we
want to calculate is

n
∑

i=1

(

n

i

)

(2n− 2i)!(−1)id[M][i].

How can we compute d? Let ni be the number of integers in {1, . . . ,N } with remainder i modulo
M . We take the convention that numbers have remainders 1, . . . ,M , not 0 in this editorial. By
fixing the number of pairs of stones put in remainder class j modulo M , we find that for i > 0,

d[i][j] =

2k≤ni∧k≤j
∑

k=0

d[i − 1][j − k] ni !

(ni − 2k)!

(

k

j

)

.

The coefficient ni !/(ni − 2k)! is the number of ways of arranging 2k objects in ni positions;
whereas the binomial coefficient is necessary to choose which stone pairs are placed in this
remainder class. Finally we note that d[0][0] = 1,d[0][j] = 0 for j > 0 (taking the convention that
we consider the positions divisible by M at step M not step 0). This solution has complexity
O(N (n1 + . . .+nM )) =O(N2).
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Problem 2: Paths

(Proposed by Alexandra-Maria Udris, toiu.)

Observation 1. Because the number of treats on each edge is non-negative, the optimal solution
is obtained by choosing only vertices that are leaves.

Proof. Suppose the current solution contains a vertex x that is not a leaf and we replace it with
any leaf y in its subtree that was not chosen in the solution. The path from the root to y will
contain all the edges on the path from the root to x plus the edges on the path from x to y so
the number of treats taken can only increase or stay the same.

If the number of leaves is smaller than K , then the answer is
∑n−1

i=1 ci (if all the leaves are
chosen, each edge will be on at least a path).

Definition 1. Let treats(x,y) be the treats on the path from x to y where x is an ancestor of y.

Observation 2. For a fixed root, the optimal solution can be obtained by repeating the following
procedure:

• Compute for every leaf x the number of treats d(x, i) we can take by adding x to the
current solution at step i. These edges will represent a path from an ancestor ax of x to x -
all edges on the path from the root to ax were already visited and now we can visit the
edges on the path from ax to x.

• Add the leaf with the largest d(x, i) to the solution. Let numx be equal to dx when x is
added to the solution; i.e. numx = treats(ax,x).

Proof. Let leafi be the leaf added to the solution at step i.
Suppose the current solution contains leaf1, leaf2, . . . , leafi−1, but does not contain leafi . We

will show that we can always replace one of the remaining K − i +1 leaves and obtain a better
solution.

• No edges on the path from aleafi to leafi are visited. In this case, we can choose any leaf
y. Because d(y, i) ≤ d(leafi , i) and the number of treats we lose by removing y cannot be
greater than d(y, i), the solution can only increase or remain the same.

• Otherwise, we will choose the leaf y for which the lca (let it be v) of leafi and y is the
lowest possible. The edges from the root to v will be visited no matter which one of
them we choose. If we replace y with leafi , we will get treats(v, leafi) treats and lose
treats(v,y). Because aleafi is an ancestor of v (otherwise we would be in the first case),
d(leafi , i) = treats(aleafi , leafi), d(y, i) = treats(aleafi , y) and we know that d(y, i) ≤ d(leafi , i),
the soltion can only increase or remain the same.

Simulating the procedure K times for each possible root will give us the time complexity
O(N2K).

Definition 2. For each vertex v in the tree, let

• downv be the leaf in the subtree of v for each treats(v, leaf) is maximum among all leaves
in the subtree.

• upv be the leaf that is not in the subtree of v for each treats(v, leaf) is maximum among all
such leaves.

Observation 3. For each leaf x, ax will be its lowest ancestor for which downancestor is not x or
the root if downroot = x.
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For each possible root, we can precalculate downv for all vertices using a dfs and then use
the previous observation to compute numx for all leaves. The answer will be the sum of the
largest K values among all numx. Depending on the method chosen to compute the answer, the
time complexity will be O(N2) or O(N2 logN )

To further improve the solution, we need to find a way to update numx faster instead of
recalculating all of the for each root.

Observation 4. If we have calculated numx for a root r and we want to change the root to q
which is a child of r, only the paths for two leaves will change:

• If x is upq, ax will change from r to q, so numx will be treats(q,x) (the edge from q to r will
now be part of the path from the root to x).

• If y is downq, ay will also change from r to q, so numy will be treats(q,y) (the edge from q
to r will no longer be part of the path from the root to y).

Now, we will start with any vertex as the root r of the tree and precalculate upv and downv
for all vertices in the tree. Then, we will compute numx for all leaves when the root is r and
find the answer for r.

We will use a depth-first search to find the answer for all the other possible roots:

• When we enter vertex v, we will have to change the root from the father of v to v. Using
the previous observation, we will update numupx

and numdownx .

• We need to find the sum of the K largest values. One way to do this is to keep the values
of the current K chosen leaves in a max-heap and the other values in a min-heap. When
we make an update, we will check if the maximum among the leaves that were not chosen
is larger than the minimum among those that were chosen and swap these two.

• We will now calculate recursively the answer for the vertices in the subtree in v.

• After we have computed the answers for all vertices in the subtree of v, we need to change
the root back from v to the father of v, so we need to update numupx

and numdownx again.

The time complexity will be O(N logN ).

Problem 3: Weirdtree

(Proposed by Tamio-Vesa Nakajima.)

Brute force. This is a pretty straight-forward solution. At each step we do the following:

1. if it is a magic operation, we set in O(1) the value at that position;

2. if it is a query, we add manually all the values from l to r in O(r − l +1) =O(n) worst case;

3. if it is a cut operation, we extract the leftmost maximum in r − l +1 steps and decrease it
by one.

Complexity: O(NQ).

3



Subtask 2. This is another pretty straight-forward square root decomposition solution. Divid-
ing the array in buckets of length

√
N , for each bucket we keep the following information:

1. Maximum value

2. Position of the maximum value

3. Sum of elements in the bucket

Then, the operations are performed in the following way:

1. if it is a magic operation, find the bucket that the element is in and, by iterating through
the elements from that bucket, recompute the bucket’s information.

2. if it is a query L R, manually add the elements L . . . (beginning of some bucket i) − 1 and
(end of some bucket j) + 1 . . .R and then iterating through bucket indices i . . . j , add the
precomputed sums for each bucket. Obviously, if L and R are in the same bucket, manually
adding the elements between L and R is enough.

3. if it is a cut operation, since k = 1, using a similar strategy as for the query, find the
maximum and its position in the interval L R, let it be max1 at position pos1. Then, this
can be seen as the magic operation ”Asuza changes the tree with index pos1 so that it has
height max1”.

Complexity: O(N +Q
√
N ). This is because we first do a precalculation to find each bucket’s

information and then, since each bucket is of length
√
N and there are

√
N different buckets,

each operation will be O(
√
N ).

Subtask 5. Here we have the important restriction that l = 1 and r = n. This means that
every element is always inside the query. So, because the most “weird” operation is the one to
decrease the maximal values, we can keep a set with pairs of (values, frequency at which they
appear). Now, when we have to cut k times, we can extract and pop the current maximum node
from the set. Now, let max1 be the current maximum value, and max2 be the second maximum
value. Let fr1 be the frequency of max1. If fr1(max1−max2) ≤ k, then we know we can apply
fr1(max1−max2) and decrease all fr1 values of max1 to the value of max2. This has the same
effect with adding to the frequency of max2 (the current maximum node from the set) the value
of fr1. We still have to apply k − fr1(max1−max2) operations. if k < (max1−max2) fr1, then we
should decrease all max1 values with [k/ fr1]. Now we should decrease only the first k%fr1
values of max1. So, applying k cut operation in this case on (max1, fr1), has the effect of adding
to the set 2 new nodes, (max1−[k/ fr1]− 1, k%fr1) and (max1−[k/ fr1], fr1−(k%fr1)). Notice that
by doing so, on each step we extract a number of nodes and add at most 2 back to the set. At
the start we have maximum N nodes. A magic operation decreases one node’s frequency and
inserts at most one new node. So, we can have at most N +2Q different nodes in total. Now,
each node can be popped exactly once, and we do O(count of popped nodes steps), so we make
at most O(N +2Q) pops from the set. Due to the complexity of insert/erase on a set, the final
complexity is O((N +2Q) logN ).

The idea from subtask 5 isn’t a bad one. We could guess that doing some algorithm that
takes (number of different values that are affected by the current operation) steps isn’t that bad.
at the start, the number of different values is at most N . after a magic operation it increases by
at most one. A cut operation on an interval also creates at most two new values. So, in total,
we can have at most N +2Q different values over all operations. Because for each step on a cut
operation, this number decreases by one, we can say that overall all the cut operations take at
most N +2Q steps. Now, all we have to do is find an algorithm that can achieve (number of
different values that are affected by the current operation) steps.
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Subtask 6. This subtask can be solved with square root decomposition too. This time,
however, for each bucket, the following information will be kept:

1. sum: The sum of elements in that bucket.

2. max1: The value of the maximum element in that bucket.

3. fr1: How many times the max1 value appears In the bucket.

4. max2: The second-largest value that appears in that bucket.

5. lazy: The largest value that can actually appear in the bucket (the significance of this will
be explained later).

Now, the operations will be processed in the following way:

1. If it is a magic operation, iterate through all elements in the given element’s bucket and
recompute the bucket’s information. Keep in mind that the lazy plays an important role,
as even if there is some tree (other than the currently modified one) that has a value higher
than the lazy of the bucket, it must be seen as if its length is actually lazy, as it has been
modified but not yet updated by our program.

2. If it is a query L R operation, compute the sum in a similar way to the previously described
square root decomposition solution.

3. if it is a cutting operation, while there are still trees to be cut, compute the max1, fr1 and
max2 of the interval L R. Then, try to decrease all the max1 values as much as possible,
either until the cutting operation ends, or until all the max1-s become max2-s. If all
max1-s have become max2-s, then we know that the maximum value that we an have in
the interval L R is actually max2 now. This is where the lazy for each bucket comes in;
by iterating through the buckets between L and R (and obviously the prefix and suffix of
the interval that must be iterated through separately, just like in the previous square root
decomposition solution), we can set the lazy = max2. In the case where not all max1-s
become max2-s, a similar approach is used, but some more particular cases must be taken
into consideration.

The key of this solution is efficiently coding the updates on the buckets and making use of
the lazy in order not to modify each element individually. This solution has complexity roughly
O(N + (N +Q)

√
N ), similarly to the previous square root decomposition solution, but now the

complexity also depends on the number of distinct values in the array. The cutting operation
has a good complexity in practice, as every time we compute the information in the interval in
order to cut some subset of trees, the number of distinct values in the interval decreases, so the
’while’ described above will not run for many steps.

Complete solution. Variant 1. We can also guess that probably the stuff that we kept track of
at subtask 5 (that is, the first 2 maximum values and the frequency of the maximum) are still
relevant. The whole problem suggests a Segment-Tree-like structure. So, right now we want to
track the following things in a Segment-Tree node:

1. max1

2. max2

3. fr1

4. sum
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The composition of 2 nodes is straightforward. Magic and query operations are implemented
trivially. For the cut operation, we can first take a query on the subsegment. Like in subtask 5,
we can check if fr1(max1−max2) ≤ k.

Case 1: fr1(max1−max2) ≤ k. If yes, we should subtract from all the maximum positions
max1−max2. This suggests a lazy propagation, so we should also keep track of it. This
propagation should only propagate on the maximum values. So, we only propagate from a
node to a son if and only if they have the samemaximum value (node .max1 == son .max1).
There is, however, a problem. in the nodes which have the same max2 as the queries, we
cannot just propagate lazily, because we don’t know what the next different max2 will be.
Since we cannot apply lazy, we have to go further down in the Segment-Tree. So, with
these observations, so far the break and apply lazy conditions are as follows:

Break: (node . left > r)∨ (node .right < l)∨ (k = 0)

Lazy: (node . left ≤ l)∧ (r ≤ node .right)∧ (node .max1−k > node .max2).

Case 2. fr1(max1−max2) > k. Like in case 1, we can still subtract from all maximum values
k/ fr1. Now, we have to decrease only the first k%fr1 maximum values. In order to do that,
on the range update operation we can also keep in mind the number of position we should
subtract an “extra” 1 from the maximum. We can keep track of it by first applying the
update on the left son and then on the right one. The break and lazy conditions change
only slightly. In the following condition we use the Iverson bracket; so [x < y] is 1 if x < y
and 0 otherwise.

Break: (node . left > r)∨ (node .right < l)∨ (k = 0∧ extra = 0)

Lazy: (node . left ≤ l)∧ (r ≤ node .right)∧
(node .max1−k − [extra > 0] > node .max2)∧ (extra ≥ node . fr1)

Now the only question that remains is what the complexity of this is. Notice that in the
range update operation, in the case when max1−k =max2, we take some extra steps. But
the following observation saves us: let us imagine the number of nodes visited by a normal
Segment-tree operation (where the break and lazy conditions are not as heavily modified as
ours). Now, in our case, for each extra step we take, we know that the number of different

values in the current subtree decreases (because we merge the current maximum with
the second maximum). So, overall, we take at most the sum of the number of different

values in each Segment-tree node extra steps (which is N logN at the start). Now, a
magic operation increases this sum by logN at most (it increases it by 1 for each node
from the path from the root to the corresponding leaf). A query operation doesn’t modify
it at all, and an update range operation increases it by at most logN too (because it splits
at most 1 value into 2). So, overall, this sum is at most N logN +Q logN . So, overall, we
take at most N logN +Q logN extra steps (compared to a normal Segment-tree) Recall
that the normal complexity of a Segment-tree operation is logN , and that by doing
O(the number of distinct values that are affected by cut) operations we make overall N +2Q
steps, the overall complexity is O((N +Q) logN +N logN +2Q logN ) =O((N +Q) logN ).

Variant 2. As you might have noticed, the solution for Subtask 6 has a similar approach
to the optimal solution, making use of square root sized buckets instead of a Segment Tree
structure. Because of this, optimising that solution will also score 100 points, as it behaves very
well in practice, too.
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