Tower Defense

You are playing a tower defense game on a grid. Some cells on the grid contain impassable rocks, some contain enemy attackers and some are empty. You may place a single laser tower in an empty cell. When placed, the tower fires laser beams north, south, east and west. The beams travel until they hit a rock or to the end of the grid, destroying all the enemies in their paths. Every enemy you destroy earns you a number of points. Your final score is the total number of points from all the destroyed enemies.

Task

Find the highest possible final score.

Input data

The file **tower.in** contains two integer numbers on the first line, M and N, representing the numbers of lines and columns in the grid. The second line contains two integers, R and E, representing the number of rocks and the number of enemies. The following R lines contain pairs of integers l c denoting the line and column coordinates of a cell containing a rock. The following E lines contain triplets of integers l c d denoting the coordinates of a cell containing an enemy and the number of points earned for destroying that enemy.

Output data

The file **tower.out** must contain a single number, the highest possible final score.

Limits and constraints

- $1 \le \mathbf{M}, \mathbf{N} \le 1,000,000,000$
- $1 \le \mathbf{R}, \mathbf{E} \le 100,000$
- $1 \le \mathbf{l} \le \mathbf{M}$ and $1 \le \mathbf{c} \le \mathbf{N}$ for all coordinates
- $1 \le s \le 10,000$ for all enemy points
- There cannot be multiple objects (rocks or enemies) at the same coordinates.
- Time limit: 0.5 seconds
- Memory limit: 128 MB

Subtasks

Test cases will be scored **individually**.

Subtask	Percentage of test cases	Additional input constraints
1	10	$M, N \le 1,000$
2	20	R, E \leq 1,000 R, E \leq 1,000
3	30	$\mathbf{R}, \mathbf{E} \le 30,000$
4	40	none

Example

tower.in	tower.out	Explanation
10 10	90	Placing the tower at (5, 3) earns 90 points (40 + 10 + 10 + 30).
3 6		
2 3		Note that placing the tower at (5, 5) would earn more points;
15		however, the tower must be placed in an empty cell.
6 3		
5 2 40		
5 5 10		
5 6 30		
1 3 20		
2 5 50		
3 3 10		