Tower Defense

You are playing a tower defense game on a grid. Some cells on the grid contain impassable rocks, some contain enemy attackers and some are empty. You may place a single laser tower in an empty cell. When placed, the tower fires laser beams north, south, east and west. The beams travel until they hit a rock or to the end of the grid, destroying all the enemies in their paths. Every enemy you destroy earns you a number of points. Your final score is the total number of points from all the destroyed enemies.

Task

Find the highest possible final score.

Input data

The file tower.in contains two integer numbers on the first line, \mathbf{M} and \mathbf{N}, representing the numbers of lines and columns in the grid. The second line contains two integers, \mathbf{R} and \mathbf{E}, representing the number of rocks and the number of enemies. The following \mathbf{R} lines contain pairs of integers $\mathbf{I} \mathbf{c}$ denoting the line and column coordinates of a cell containing a rock. The following \mathbf{E} lines contain triplets of integers lcs denoting the coordinates of a cell containing an enemy and the number of points earned for destroying that enemy.

Output data

The file tower.out must contain a single number, the highest possible final score.

Limits and constraints

- $1 \leq \mathbf{M}, \mathbf{N} \leq 1,000,000,000$
- $1 \leq \mathbf{R}, \mathbf{E} \leq 100,000$
- $1 \leq \mathbf{l} \leq \mathbf{M}$ and $1 \leq \mathbf{c} \leq \mathbf{N}$ for all coordinates
- $1 \leq \mathbf{s} \leq 10,000$ for all enemy points
- There cannot be multiple objects (rocks or enemies) at the same coordinates.
- Time limit: 0.5 seconds
- Memory limit: 128 MB

Romanian Master of Informatics

Edition, Bucharest, $20^{\text {th }}-23^{\text {rd }}$ October 2016

Subtasks

Test cases will be scored individually.

Subtask	Percentage of test cases	Additional input constraints
1	10	$\mathbf{M}, \mathbf{N} \leq 1,000$ $\mathbf{R}, \mathbf{E} \leq 1,000$
2	20	$\mathbf{R}, \mathbf{E} \leq 1,000$
3	30	$\mathbf{R}, \mathbf{E} \leq 30,000$
4	40	none

Example

tower.in	tower.out	Explanation
1010	90	
36		Placing the tower at $(5,3)$ earns 90 points $(40+10+10+30)$.
23		Note that placing the tower at $(5,5)$ would earn more points;
15		
63		
5	240	
5	5	10
5	630	
13	20	
2	50	
3	3	10

