Romanian Master of Informatics
Edition, Bucharest, $20^{\text {th }}-23^{\text {rd }}$ October 2016

Frequent

An astrobiologist studies life on the planet Alphabet. Life here is DNA-based and there are 26 nucleotides. Consequently, the DNA of a life form from Alphabet can be represented as a string of lowercase letters of the Latin alphabet. The astrobiologist has sequenced the DNA of \mathbf{K} life forms, not necessarily distinct, with a total length of \mathbf{N} nucleotides. Now she would like to find strands (substrings) of DNA that occur frequently among these life forms. Let $\mathbf{L}(\mathbf{i})$ be the length of the longest strand of consecutive DNA nucleotides common to at least \mathbf{i} life forms, for $2 \leq \mathbf{i} \leq \mathbf{K}$. Note that $\mathbf{L}(\mathbf{i})$ can be 0 .

Task

Help the astrobiologist compute the array \mathbf{L}.

Input data

The file frequent.in contains an integer number on the first line, \mathbf{K}, representing the number of life forms. Each of the following \mathbf{K} lines contains a non-empty string of lowercase letters, terminated by a newline character.

Output data

The file frequent.out must contain \mathbf{K} - 1 lines with the values $\mathbf{L}(2), \mathbf{L}(3), \ldots, \mathbf{L}(\mathbf{K})$, each on its own line.

Limits and constraints

- $2 \leq \mathbf{N} \leq 200,000$
- $2 \leq \mathbf{K} \leq \mathbf{N}$
- Time limit: 0.5 seconds
- Memory limit: 128 MB

Subtasks

Test cases will be scored individually.

Subtask	Percentage of test cases	Additional input constraints
1	30%	$\mathbf{N} \leq 10,000$
2	40%	$\mathbf{N} \leq 100,000$
3	30%	none

Romanian Master of Informatics

Edition, Bucharest, 20 ${ }^{\text {th }}-23^{\text {rd }}$ October 2016

Example

frequent.in	frequent.out	Explanation
6	5	atter appears in two of the strings
matter	3	$m a t$ appears in three of the strings
animate	2	$m a$ (or $a t$ or te) appear in four of the strings
pattern	2	$m a$ appears in five of the strings
thermal	1	a appears in all the strings
domain		
teammate		

