

Romanian Master of Informatics ^{3rd} Edition, Bucharest, 15th -18th of October 2015

Chimichangas

Being tired of shooting his huge upcoming movie, Deadpool has decided to take a short break and open a restaurant in Canada. Deadpool is also the chef and he can only cook one type of food: chimichangas. For those of you who don't know what chimichangas are (shame on you!), think of a fried burrito.

Deadpool can cook **N unique** types of chimichangas, each of them having a precise number of calories (Deadpool doesn't make mistakes). All the chimichangas have at most **C** calories.

The restaurant has become very popular. Today there are ${\bf Q}$ clients in line and Deadpool wants to impress them.

Each client eats a **K-course** meal (**K** dishes), follows a very strict diet and knows exactly how many calories they are supposed to eat. Client **i** eats exactly **meal**, calories. Each client would like to

know in how many ways they can achieve the amount of calories their diet requires by eating exactly **K** chimichangas (not necessarily of distinct types).

Task

Given the calorie contents of **N** types of chimichangas **(calorie₁, calorie₂, ..., calorie_N),** as well as the number of courses **K**, you must answer **Q** questions, one for every client's calorie requirement.

Input data

The input file **chimichangas.in** has the format:

line 1:	NK
line 2:	calorie ₁ calorie ₂ calorie _N
line 3:	Q
line 4 Q + 3:	meal ₁
	meal ₂
	meal _Q

Output data

The output file **chimichangas.out** must contain **Q** lines. Each line must contain a single number, the answer to the corresponding question. Because the answer can be big, you are asked to compute it modulo **2999**.

Romanian Master of Informatics

3rd Edition, Bucharest, 15th -18th of October 2015

Limits and constraints

- $1 \leq \text{calorie}_i \leq C \text{ for } 1 \leq i \leq N$
- $0 \le \text{meal}_i \le W$ for $1 \le i \le Q$
- $1 \le C \times K \le 100,000$
- $1 \le \mathbf{N} \le \mathbf{C}$
- $0 \le W \le 1,000,000,000$
- $1 \le \mathbf{Q} \le 200,000$
- Deadpool has an **infinite amount** of each type of chimichanga.
- The **order** in which each client eats matters (e.g. (1 + 2) is different from (2 + 1))
- No two types of chimichanga have the same number of calories.
- The answers must be printed **modulo 2999**.
- Time limit: 0.35 seconds
- Memory limit: 64 MB

Subtasks

Subtask	Percent of points	Additional input constraints
1	20	$N \leq 100, K \leq 10, W \leq 2,000$ and $C \leq 500$
2	5	K = 2, W \leq 60,000 and Q \leq 100
3	25	$\mathbf{C} \times \mathbf{K} \le 10,000 \text{ and } \mathbf{W} \le 50,000$
4	20	$\mathbf{C} \times \mathbf{K} \le 30,000$
5	30	none

Example

chimichangas.in	chimichangas.out	Explanation
34	4	There are 4 ways to eat 5 calories: $(1 + 1 + 1 + 2)$,
125	1	(1 + 1 + 2 + 1), (1 + 2 + 1 + 1), (2 + 1 + 1 + 1).
3	5	
5		There is 1 way to eat 4 calories: $(1 + 1 + 1 + 1)$.
4		
8		There are 5 ways to eat 8 calories: $(1 + 1 + 1 + 5)$,
		(1 + 1 + 5 + 1), (1 + 5 + 1 + 1), (5 + 1 + 1 + 1),
		(2+2+2+2).