

Romanian Master of Informatics ^{2nd} Edition, Bucharest, 16th -19th of October 2014

parking

You have to manage a parking lot with M parking spaces. The parking spaces are labeled with integer numbers starting from I to M. All the parking spaces are placed one after one, such as the i^{th} parking space has as neighbors the $(i - 1)^{th}$ and $(i + 1)^{th}$ parking spaces, except the I^{st} and the M^{th} parking spaces that only have the 2^{nd} and the $(M - 1)^{th}$ parking spaces as neighbors, respectively.

Initially, all the parking spaces are empty. There are *N* drivers and each of them has their favorite parking space (the *i*th driver would like to park on the A_i^{th} parking space). If the *i*th driver ends up parking on the B_i^{th} parking space then we can measure his dissatisfaction by using the following formula: $|A_i - B_i|$.

Task

Given M the number of parking spaces, N the number of drivers and A_i the favorite parking spaces of all the drivers, you are to compute the minimal cumulative dissatisfaction of all the drivers.

Input data

The first line of the input file parking.in contains two numbers M and N, separated by one space. The second line contains the favorite parking spaces $A_1, A_2, ..., A_n$ of each of the drivers.

Output data

The first line of the output file parking.out must contain a single number representing the minimal cumulative dissatisfaction of all the drivers.

Limits and constraints

- $1 \le M \le 10,000$
- $1 \le N \le 1,000$
- $N \leq M$
- Two or more drivers cannot use the same parking space.
- The cumulative dissatisfaction of all the drivers is computed by summing the dissatisfactions of each driver.
- Time limit: 0.1 seconds
- Memory limit: 2 MB

Example

parking.in	parking.out	Explanations
10 3 3 5 3		One way of achieving the minimal cumulative dissatisfaction of all the drivers is to instruct the drivers to park as follows: $B_1 = 3, B_2 = 5$ and $B_3 = 4$. The dissatisfactions of the drivers are 1, 0 and 0, respectively, so their cumulative dissatisfaction is $1 + 0 + 0 = 1$.