
 
 

 

 - 1 - 

Source 
An important problem of software maintenance is to track down duplication in a large software 

system. One would like to find not only exact matches between sections of code, but parameterized 

matches, where a parameterized match between two sections of code means that one section can be 

transformed into the other by replacing the parameter names (e.g., identifiers and constants) of one 

section by the parameter names of the other via a one-to-one (bijective) function. 

 

Let Σ and Π be two alphabets: Σ is the upper case English alphabet and Π is the lower case English 

alphabet. Each symbol in Σ represents a token and each symbol in Π represents a parameter. 

 

A string can consist of any combinations of tokens and parameters from Σ and Π. Two strings A and 

B are said to p-match if and only if 

 

1. A and B have the same length (more formally: length(A) = length(B)) 

2. Each token in A matches a token in B and each parameter in A matches a parameter in B 

(more formally: (Ai is a token and Bi is a token) or (Ai is a parameter and Bi is a parameter) 

for any 1 <= i <= length(A)) 

3. The alignment of tokens in A and B is a perfect match (more formally: if Ai is a token then Ai 

= Bi for any 1 <= i <= length(A)) 

4. The alignment of parameters in A and B defines a one-to-one correspondence between 

parameter names in A and parameter names in B (more formally: there exists a one-to-one 

(bijective) function f: Π → Π such that if Ai is a parameter f(Ai) = Bi for any 1 <= i <= 

length(A)) 

 

A token represents a part of the program that cannot be changed, whereas a parameter represents a 

program's variable, which can be renamed as long as all occurrences of the variable are renamed 

consistently. Thus if A and B p-match, then the variable names in A could be changed to the 

corresponding variable names in B, making the two programs identical. If these two problems were 

part of a larger program, then they could both be replaced by a call to a single subroutine. 

 

Task 

Given a text T and a pattern P, each a string over Σ and Π, find all substrings of T that p-match P. 

 

Input data 

The first line of the input file source.in contains the string P followed by the second line 

containing the string T. 

 



 
 

 

 - 2 - 

Output data 

The output file source.out must contain on the first line the number of substrings of T that p-

match P. On the second line the offsets of those substrings are to be printed separated by a space 

(by convention, the prefixes of T have offset 1). 

 

Limits and restrictions 

 1 ≤ length(T) ≤ 1,000,000 

 1 ≤ length(P) ≤ 10,000 

 Time limit: 0.07 seconds 

 Memory limit: 16 MB 

 

Example 

source.in source.out Explanation 

XYabCaCXZddbW 

xXYdxCdCXZccxW 

1 

2 
The pattern XYabCaCXZddbW p-matchs the 2-offset 

text substring XYdxCdCXZccxW but does not p-

match the 1-offset text substring xXYdxCdCXZccx. 

 

Notice that when the p-match occurs, the following 

one-to-one (bijective) function f is used: 

f(a) = d 

f(b) = x 

f(d) = c 

 


