

Romanian Master of Informatics 2nd Edition, Bucharest, 16th -19th of October 2014

Hypercube

The *N*-hypercube is an directed acyclical graph with 2^N nodes tagged with numbers from 0 to $2^N - 1$ so that there is an arc from node *x* to node *y* if and only if x < y and a non-negative integer *p* exists such that $x \wedge y = 2^p$ (\wedge operator stands for bitwise xor).

Task

Given *N*, *M* and K, three positive integers, you are to compute:

a. The minimum label *i* of a node belonging to the *N*-hypercube that has an arc from *i* to *M*.

b. The minimum label *j* of a node belonging to the *N*-hypercube that has an arc from *M* to *j*.

c. The number of paths of length *K* (having *K* arcs) found in the *N*-hypercube. Because this number may be quite large, you are to compute the number **modulo 100003**.

Input data

The first line of the input file hypercube.in contains three numbers *N*, *M* and K, each separated by one space.

Output data

The first line of the output file hypercube.out must contain a single number, the answer for task a. The second line must contain a single number, the answer for task b. The third line must contain a single number, the answer for task c.

Limits and constraints

- $2 \le K \le N \le 100,000$
- $1 \le M \le 100,000,000$
- For any given number *M*, there is at least one arc leaving node *M* and one arc reaching node *M*.
- The answer for task c must be computed **modulo 100003**.
- ^ operator stands for bitwise xor.
- Solving task a correctly will grant you 10% of the total problem score.
- Solving task b correctly will grant you 10% of the total problem score.
- Solving task c correctly will grant you 80% of the total problem score.
- Time limit: 0.2 seconds
- Memory limit: 128 MB

Romanian Master of Informatics

2nd Edition, Bucharest, 16th -19thof October 2014

Example

hypercube.in	hypercube.out
4 3 2	2 7
	48